محل لوگو

اندازه گيري يون كروم (III) در پساب رنگي


این متن شامل 73 صفحه می باشد 

 

اين روش بر اساس عبور پرتوي از اشعه الكترو مغناطيس از درون نمونه و سنجش ميزان جذب آن قرار دارد. هنگامي كه اشعه الكترو­مغناطيس از داخل يك محلول مي­گذرد مقداري از آن بطور انتخابي جذب نمونه مي­شود. به طوري كه شدت نور خارج شده كمتر از شدت نوري است كه به محلول تابيده شده است. اين پديده در مورد جذب تابش هاي مرئي به وضوح ديده مي­شود.

مثلا اگر نوري سفيد از ميان محلول سولفات مس عبور داده شود، محلول آبي رنگ به نظر مي­رسد زيرا يون­هاي مس محلول جزء قرمز پرتو تابيده شده را جذب كرده و مكمل آن كه آبي است از خود عبور مي­دهد.

اندازه­گيري جذب تابش­هاي مرئي – ماوراء بنفش راه مناسبي را براي تجزيه تعداد بيشماري از گونه­هاي آلي و معدني فراهم مي­آورد. تابش در اين نواحي داراي انرژي كافي براي انتقالات الكتروني الكترونهاي والانس است. اگر نمونه در حالت گازي از اتم ها و يا ملكول­هاي ساده تشكيل شده باشد، طيف جذبي آن معمولاً مركب از يكسري خطوط تيز و كاملاً مشخص است كه مربوط به تعداد محدود انتقالات الكترونيكي مجاز مي­باشد.

طبيعت ناپيوسته فرآيند جذب، درجه بالايي از گزينش پذيري را به تجزيه­هايي مي­دهد كه بر پايه چنين اندازه­گيري­هايي قرار گرفته باشند، در مقابل، طيف­هاي جذبي يون­ها و ملكولها در محلول معمولاً شامل نوارهاي پهن مي­باشند كه بخشي از آنها از همپوشاني انتقالات ارتعاشي و گاهي اوقات چرخشي بر روي انتقالات الكترونيكي ارتعاشي و گاهي اوقات چرخشي بر روي انتقالات الكترونيكي ناشي مي­شود. در نتيجه هر جذب الكترونيكي را يكسري خطوط پهن نزديك به هم كه به نظر پيوسته مي­رسند، همراهي مي­كنند. بعلاوه پهن شدن خطوط در نتيجه نيروهاي بين ملكولي رخ مي­دهد. اين نوع طيف­ها گزينش پذيري كمتري دارند.

 

 

1-2- جذب تابش:

وقتي كه تابش از درون يك لايه شفاف جامد، مايع يا گاز عبور كند برخي از فركانسها ممكن است توسط فرآيندي بنام جذب، بطور انتخابي حذف شوند. در اينجا انرژي بيشتر يا حالات تحريك شده ارتقاء مي­يابند.

اتمها يا مولكولهاي تحريك شده داراي عمر نسبتا كوتاهي مي­باشند و تمايل دارند تا بعد از حدود 10 ثانيه به حالت­هاي عادي خود برگشت كنند. معمولا انرژي آزاد شده در اين فرآيند در دستگاه بصورت گرما ظاهر مي­شود. مع ذالك در بعضي موارد گونه­هاي تحركي شده ممكن است يك تغيير شيميايي را متحمل شوند كه انرژي را جذب مي­كند (يك واكنش فتوشيميايي) و در موارد ديگر تابش در شكل فلوئورسانس يا فسفرسانس (معمولاً با طول موجهاي بلند تر) دوباره نشر مي­شوند.

اتمها مولكولها و يا يونها تعداد محدودي ترازهاي انرژي كوانتيده گسسته دارند براي اينكه جذب تابش انجام گيرد انرژي فوتون تحريك كننده بايد با تفاوت انرژي بين حالت عادي و يكي از حالتهاي تحريك شده گونه جذب كننده يكي باشد.

از آنجايي كه اين تفاوت انرژي براي هر گونه منحصر به فرد است مطالعه فركانسهاي تابش جذب شده وسيله­اي را براي مشخص كردن مواد سازنده نمونه­اي از ماده فراهم مي­آورد. براي اين منظور يك منحني از كاهش در توان نور تابنده (جذب) بصورت تابعي از طول موج يا فركانس بطور تجربي ترسيم مي­شود. منحنيهاي نمونه­اي از اين نوع، طيف­هاي جذبي ناميده مي­شوند.

 

1-3- تكنيك­ها و ابزار براي اندازه­گيري جذب تابش ماوراء بنفش و مرئي:

اندازه­گيري جذب تابشهاي ماوراء بنفش و مرئي راه مناسبي را براي تجزيه تعداد بيشماري از گونه­هاي آلي و معدني فراهم مي­آورد. تابش در اين نواحي داراي انرژي كافي براي انتقال­هاي الكترونيكي الكترونهاي والانس در لايه بيروني است اگر نمونه در حالت گازي از اتمها و يا مولكولهاي ساده تشكيل شده باشد طيف جذبي آن معمولاً مركب از يك سري خطوط تيز و كاملاً مشخص است كه مربوط به تعداد محدود انتقالات الكترونيكي مجاز مي­باشد. طبيعت ناپيوسته فرآيند جذب، درجه بالايي از گزينش پذيري را به تجزيه­هايي مي­دهد كه بر پايه چنين اندازه­گيريهايي قرار گرفته باشند. در مقابل طيفهاي يونها و مولكولها در محلول معمولاً حاوي نوارهاي پهن مي­باشند كه بخشي از آنها از قرار گرفتن تغييرات انرژيهاي ارتعاشي و گاهي چرخشي بر روي انتقالات الكتروني ناشي مي­شود. در نتيجه هر جذب الكتروني را يك سري خطوط آنقدر بهم نزديك كه به نظر پيوسته مي­رسند همراهي مي­كند. بعلاوه، پهن شدن خطوط در نتيجه نيروهاي بين مولكولي رخ مي­دهد كه اين نيروها بين مولكولها يا يونهاي بصورت نزديك بسته­بندي شده در يك محيط مادي فشرده، عمل مي­كنند. اين نوع طيفها گزينش پذيري كمتري دارند. از طرف ديگر نوارهاي پهن براي اندازه­گيري­هاي كمي دقيق، مناسب­ترند.

 

1-4- جنبه­هاي كمي اندازه­گيريهاي جذبي:

جذب تابش الكترومغناطيسي توسط گونه M مي­تواند به صورت يك فرايند برگشت ناپذير دو مرحله­اي تلقي شود كه اولين مرحله اين فرآيند را مي­توان بصورت زير نمايش داد.

در اينجا M* نشان دهنده ذره اتمي يا مولكولي در حالت تحريك شده است كه از جذب فوتون ناشي مي­شود. طول عمر حالت تحريك شده كوتاه است (8-10 تا 9-10 ثانيه) و باوجود اين حالت توسط يكي از چندين فرآيند آسايشي خاتمه داده مي­شود. متداولترين نوع آسايش شامل تبديل تحريك به گرماست؛ يعني،

گرما

آسايش مي­تواند از تجزيه M* جهت تشكيل گونه­هاي جديد نيز ناشي شود. چنين فرآيندي را واكنش فوتوشيميايي مي­نامند. ممكن است كه آسايش منتج به نشر دوباره تابش بصورت فلوئورسانس يا فسفرسانس شود. مهم است به اين نكته توجه شود كه طول عمر M* بقدري كوتاه است كه غلظت آن در هر لحظه تحت شرايط عادي، قابل صرفنظر كردن خواهد بود. بعلاوه، مقداري انرژي حرارتي توليد شده معمولاً قابل اندازه­گيري نيست. بنابراين، اندازه­گيريهاي جذبي اين حسن را دارند كه حد اقل آشفتگي را در دستگاه تحت مطالعه ايجاد مي­كنند.

 

1-5- قانون بير- لامبرت (Beer - Lamberts Law):

به سادگي مي­توان دريافت كه ميزان جذب نور توسط يك گونه جاذب بستگي به تعداد يونها و يا ملكولهاي جسم جاذب در مسير عبور نور دارد و در نتيجه با افزايش غلظت ذرات جاذب، شدت جذب نيز افزايش مي­يابد. از طرفي هر چه قدر طول مسير عبور نور از درون نمونه افزايش يابد، جذب نور با شدت بيشتري انجام خواهد گرفت. سومين عاملي كه ميزان جذب نور به آن بستگي دارد احتمال جذب فوتون توسط ذرات جاذب فوتون­هاست به طوري كه اجسام مختلف احتمال­هاي متفاوتي براي جذب پرتوي فوتون­ها از خود نشان مي­دهند.


مبلغ قابل پرداخت 20,000 تومان

توجه: پس از خرید فایل، لینک دانلود بصورت خودکار در اختیار شما قرار می گیرد و همچنین لینک دانلود به ایمیل شما ارسال می شود. درصورت وجود مشکل می توانید از بخش تماس با ما ی همین فروشگاه اطلاع رسانی نمایید.

Captcha
پشتیبانی خرید

برای مشاهده ضمانت خرید روی آن کلیک نمایید

  انتشار : ۴ دی ۱۳۹۷               تعداد بازدید : 503

برچسب های مهم

تمام حقوق مادی و معنوی این وب سایت متعلق به "" می باشد

فید خبر خوان    نقشه سایت    تماس با ما